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Candida albicans is an important fungal pathogen in humans. The interaction between C.

albicans and its host is dynamic and complex. This pathogen exhibits multifaceted strat-

egies for growth, proliferation, and survival within the host accompanied with mecha-

nisms to escape from the host defense. The host triggers complex immune responses in

response to C. albicans. This review outlines selected aspects in the current understanding

of C. albicans pathogenesis and its interactions with the host, and presents several exper-

imental tools developed in the postgenomic era to study these topics.

Copyright ª 2012, China Medical University. Published by Elsevier Taiwan LLC. All rights

reserved.
1. Introduction either acquired from the surrounding environments of the
Mycoses are diseases caused by fungi.With the increase in the

population of patients with immunodeficiency or undergoing

immunosuppressive therapy, mycoses have become

a growing problem in modern medical care. In addition, the

diagnosis of these diseases can be problematic, drug resis-

tance is of great concern, and fewer drugs are available

compared to bacterial or viral diseases [1e3]. Fungal infections

lead to various diseases that can be local, superficial, allergic,

or systemic [1]. Systemic infections are particularly serious

and potentially life-threatening [4e6].

Of the more than 1.5 million estimated species of fungi,

fewer than 150e200 species can cause disease in humans [7].

The fungal pathogens involved in systemic infections are
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host or constitute part of the normal flora in humans. The

former include Blastomyces dermatitidis, Coccidioides immitis,

Histoplasma duboisii, Histoplasma capsulatum, Paracoccidioides

brasiliensis, and Penicillium marneffei [8,9]. The latter are

opportunistic, and include Candida albicans, Aspergillus fumi-

gatus, and Cryptococcus neoformans [8,9]. Among the opportu-

nistic pathogens in humans, C. albicans is one of the most

studied.

Yeasts are unicellular fungi, and the Candida species

represents one of the yeast species of special importance to

human health [10]. Candida is a part of the normal flora in

healthy individuals, and is usually confined to the skin and

mucosal surfaces of the oral cavity, gastrointestinal and

urogenital tracts, and vagina [10]. However, Candida spp. can
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cause a wide variety of infections on mucosal surfaces under

certain conditions. The most common examples include

oropharyngeal candidiasis (OPC) and vulvovaginal candidiasis

(VVC). OPC is associated with underlying illness such as dia-

betes [10]. In addition, OPC was one of the first manifestations

of HIV-induced immunodeficiency to be recognized [11] and is

a sentinel indicator for HIV disease progression before the

appearance of more severe symptoms [12,13]. C. albicans is the

most common cause of OPC [14,15]. However, Candida glabrata,

Candida tropicalis, and Candida dubliniensis are also associated

with OPC [14,15]. C. albicans causes approximately 90% of VVC

cases, and C. glabrata is responsible for the remaining 10% of

this infection [16]. Although the relationship between VVC

and HIV is unclear, VVC is an important concern for women

infected with HIV [17]. The majority of C. albicans isolates

causing disease in AIDS patients are derived from strains

originally associated with commensal infections, and disease

recurrence can result from the same strains of C. albicans

[18,19].

In addition to causing mucosal diseases, Candida spp. can

also cause systemic and invasive infections in which Candida

penetrates and traverses the epithelial barrier to gain entry

into the bloodstream (known as candidemia) [20]. Once in the

bloodstream, Candida can disseminate to infect almost any

organs. Consequently, Candida has emerged as the fourth

most common cause of blood-borne infection in the United

States [21]. The mortality associated with these invasive

infections for adults ranges from 14.5% to 49% [22,23], and C.

albicans is estimated to be responsible for 50e60% of the cases

of invasive candidiasis [24,25]. As such, C. albicans is the most

prevalent fungal pathogen in humans. Therefore, here we

only review our current understanding of C. albicans and its

interactions with the host.
2. Virulence factors of C. albicans in
pathogenehost interactions

To establish an infection successfully, C. albicans must adapt

to different niches at various anatomic sites of the host and

express infection-associated genes. The products of infection-

associated genes contribute to C. albicans pathogenicity, and

function as virulence factors [26]. Researchers have reported

several virulence factors for C. albicans, including morpho-

logical transition, adhesins, secreted hydrolytic enzymes, and

phenotypic switching [20,26,27]. This review focuses on

several important findings related to virulence factors. For

other details, the reader should refer to other recent reviews

[28e35].

2.1. Morphological transition in C. albicans

The ability of C. albicans to switch reversibly between a single-

celled budding yeast (blastospore) and an elongated filament

form (both pseudohyphae and true hyphae) plays a crucial

role in infections [36]. Hyphal cells may promote tissue inva-

sion, whereas yeast cells facilitate dissemination of the

pathogen [37e40]. C. albicans morphogenesis is controlled by

a complex network of signaling pathways that is commonly

accompanied by the regulation of genes associated with the
morphological states [34]. The signaling and regulatory

network is activated by various environmental signals,

including serum, N-acetyl-D-glucosamine, neutral pH, a phys-

iological temperature of 37�C, 5% CO2, and nutrient starvation

[28,35,41,42].

The cyclic AMPeprotein kinase A (cAMPePKA) pathway is

involved in C. albicans yeastehyphae transition. The

cAMPePKA pathway transfers environmental signals through

the adenylyl cyclase Cyr1, which activates cAMP production.

In the case of serum-induced hyphae formation, signals pass

through the small GTPase Ras1, which subsequently activates

Cyr1 by direct interaction between Ras1 and the Ras-

association domain of Cyr1. Alternatively, G protein-coupled

receptor 1 (Gpr1) seems to sense amino acids such as methi-

onine and activates Cyr1 through Gpa2 (the associated G

protein a2 subunit), independent of Ras1 [43]. The activation of

Cyr1 increases intracellular levels of cAMP, which binds to the

regulatory subunit (Bcy1) of PKA to release and thereby acti-

vate the catalytic subunits (Tpk1 and Tpk2) of PKA [44].

Consequently, the active form of PKA controls the transcrip-

tion factor Efg1 to enhance expression of hypha-specific

genes, such as HGC1, ALS3, and HWP1. The Als3 and Hwp1

are both cell wall proteins and relevant to cell adhesion (see

the descriptio below). The HGC1 gene encodes a hypha-

specific G1 cyclin, which associates with the cyclin-

dependent protein kinase Cdc28 to phosphorylate septin

cytoskeleton proteins such as Cdc11. This in turn promotes

polarized growth, cell separation, and hyphae formation [45].

The mitogen-activated protein kinase (MAPK) cascade is

another important signaling pathway regulating C. albicans

morphogenesis. The cascade controlling morphogenesis

consists of Cst20 (MAPK kinase kinase kinase), Ste11 (MAPK

kinase kinase), Hst7 (MAPK kinase), and Cek1 (MAPK). The

activation of Cek1 through the signaling cascade subsequently

activates the downstream transcription factor Cph1, through

phosphorylation. Although the deletion of the CPH1 gene

reduces hyphal growth on solid medium, it still forms hyphae

in liquid culture and after serum induction [46]. The cph1/efg1

double deletion mutant is defective in filamentous growth

even in the presence of serum and is avirulent in a mouse

model of systemic infection [39]. In addition to activators,

there are also negative regulators of filamentation. Mutants

lacking TUP1, RFG1, MIG1, or NRG1 genes exhibit the pheno-

type of constitutive filamentation [47e50].

Nitrogen availability also affects the morphological tran-

sition of C. albicans. In the case of nitrogen limitation, upre-

gulation is involved in the expression of the MEP2 gene that

encodes a permease and sensor for ammonium, a preferred

nitrogen source for C. albicans [51,52]. The Mep2 protein

receives the signal and may induce morphogenesis by acti-

vating the cAMPePKA pathway and the Cph1-dependent

MAPK pathway [53]. Recent research has indicated that the

small GTPase Rhb1 and target of rapamycin (TOR) signaling is

also involved in regulatingMEP2 expression and low nitrogen-

mediated morphogenesis [54]. The C. albicans transcription

factors Gat1 and Gln3 control the expression of MEP2 [52]. The

gln3- and gat1-deleted mutants exhibit reduced sensitivity to

rapamycin [55], a TOR kinase inhibitor, suggesting that these

regulators are also involved in C. albicans TOR signaling.

Ambient pH also affects C. albicans morphogenesis through
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a conserved signal transduction pathway with Rim101 as the

key regulator [56,57]. Rim101 is a zinc-finger-containing tran-

scription factor that is full length and inactive under acidic

conditions [58,59]. However, at neutral to alkaline conditions,

Rim13 cleaves the C-terminal portion of Rim101, activating

the protein that alters gene expression [60]. Hypoxia and

embedding cells in a matrix can also promoter C. albicans

morphogenesis. The Efg1 and Cfz1 transcription factors are

involved in hypoxia-induced and matrix-dependent hyphae

formation, respectively [61e63].

C. albicans integrates multiple environmental cues into

complex signaling networks that coordinate various tran-

scription factors to control hypha-specific genes. Conse-

quently, C. albicans differentially express various cell surface

proteins and virulence factors. This may be significant for the

pathogen to penetrate into deep tissues to acquire nutrients or

escape from the host defense, and may also hinder detection

by the host immune systems.
2.2. Adhesins of C. albicans

The adherence to host cells and tissues is the initial and

critical step in microbial infections. In the case of mucosal

infections, C. albicans first colonizes and proliferates on the

mucosal surfaces of epithelial cells. This may be followed by

invasion, dissemination, and tissue damage [38,64]. The

outmost layer of C. albicans, the cell wall, contains diverse

carbohydrates and proteins that may contact with host

proteins, epithelial, and endothelial cells [65e67]. In addition,

C. albicans can adhere to abiotic substrates, such as medical

devices, and form surface-associated cell communities

known as biofilms [68]. Biofilm and planktonic cells differ in

many aspects, including their susceptibility to host immune

defense and antifungal agents [69e73]. Biofilm is also a dense

colonial source of cells, which are continually released into

the immediate environment, providing a reservoir for persis-

tent sources of infection.

Previous research has shown several C. albicans molecules

related to adherence, known as adhesins. The agglutinin-like

sequence (Als) protein family is the most recognized of these

adhesins [26,30]. Eight ALS genes (ALS1eALS7 and ALS9)

encode cell-wall-associated glycoproteins with similar struc-

tures. The N terminus of Als proteins, which contains a signal

sequence, an immunoglobulin-like domain, and a threonine-

rich domain, is involved in ligand binding [74e76]. These

proteins also include a central domain containing a variable

number of 36-amino-acid tandem repeats rich in serine and

threonine residues [75]. Finally, the C terminus of the Als

proteins contains a glycosylphosphatidylinositol (GPI)

anchorage sequence [77]. Studies on theALS-deletionmutants

of C. albicans or heterologous expression of C. albicans ALS

genes in Saccharomyces cerevisiae have suggested that a subset

of Als proteins is involved in adherence to host surfaces. For

example, the heterologous expression of C. albicans ALS1 or

ALS5 genes in nonadhesive S. cerevisiae causes cell binding to

extracellular matrix proteins (e.g., fibronectin, laminin, and

type IV collagen) and buccal and pharyngeal epithelial and

vascular endothelial cells [77,78]. ALS4 deletion decreases

C. albicans adherence to endothelial cells, but not to epithelial
cells [79]. In addition, Als6 can bind to collagen and Als9 to

laminin [80].

Other proteins related to C. albicans adhesion include

Hwp1, Eap1, and Int1 [26,31]. Hwp1 is a major protein on the

hyphal cell wall and is able to adhere to epithelium mediated

by host transglutaminase [81]. Hwp1 is also required for bio-

film formation [82e84]. Eap1 is a GPI-anchored cell wall

protein required for biofilm formation and binding to a poly-

styrene surface or host cells. However, its host ligands are still

unknown [85,86]. Int1 is an integrin-like protein, and the

deletion of the INT1 gene reduces C. albicans colonization on

the murine intestinal epithelium [87].

2.3. Secreted hydrolytic enzymes

Researchers have identifiedmany types of secreted hydrolytic

enzymes in C. albicans. These enzymes help C. albicans in

nutrient acquisition and disseminationwithin the host. These

enzymes can also modulate host immune responses and

cause host tissue damage [88].

Secreted aspartyl proteases (Saps) are encoded by 10

members of the SAP gene family, SAP1eSAP10 [89]. These SAP

genes are differentially expressed in different C. albicans cell

types and during various stages of C. albicansehost interac-

tion. SAP1e3 and SAP4e6 are highly expressed in yeast and

hyphal cells, respectively [32,90]. The expression of SAP7 has

been detected in some clinical samples of human oral infec-

tion [91] and SAP8 appears at high levels in human vaginal

infection [89]. SAP9 and SAP10 are expressed in both yeast and

hyphae. Their gene products contain N-glycosylation sites

and putative GPI-anchor attachment sequences, suggesting

their association with the cell wall [92,93]. Moreover, C. albi-

cans biofilms secrete more Sap proteins than planktonic cells

[94]. When proteins are the only available nitrogen source,

TOR signaling also helps regulate SAP2 transcription and Sap2

protein levels, coordinated with the small GTPase Rhb1 [95].

Under these conditions, the transcription factors Gat1 and

Gln3 induce the expression of the STP1 gene, which encodes

a proteolytically activated transcription factor that subse-

quently mediates SAP2 gene expression [96].

Different Sap proteins possess unique enzymatic charac-

teristics and substrate specificities [89]. Sap1e3 proteins

exhibit the highest activity at pH 3e5, whereas Sap4e6 are

most active at pH 5e7. These enzymesmay help the pathogen

to develop infections at different anatomical sites in humans

[32,97]. For example, Sap2 is capable of digesting human

albumin, hemoglobin, keratin, and secreted IgA [98]. Sap2

digests proteins into oligopeptides that are subsequently

taken up by oligopeptide transporters encoded by the OPT

gene family [99]. Therefore, Sap2 and other Saps may be crit-

ical for cell growth in humans using host proteins as

a nitrogen source. The degradation of human proteins also

allows C. albicans to destroy host barriers and is followed by

deep penetration into tissues or the bloodstream.

The four secreted phospholipase A to D (PLA, PLB, PLC and

PLD) hydrolyze one or more ester linkages of glycer-

ophospholipids on the host cell membrane, and are critical

factors in tissue invasion. PLB represents the major activity of

C. albicans phospholipase, and contains both hydrolase and

lysophospholipaseetransacylase activities [100,101]. PLB

http://dx.doi.org/10.1016/j.biomed.2012.12.004
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proteins have broad substrate specificity and hydrolase

activity releases fatty acids from phospholipids and lyso-

phospholipids by hydrolyzing acyl ester bonds and further

catalyzing lysophospholipaseetransacylase reactions [102].

Previous studies on several C. albicans PLB genes have impli-

cated PLB1 and PLB5 in C. albicans virulence [102e104]. In

addition to Saps and phospholipases, C. albicans also secretes

a serine peptidase and at least nine lipases. The peptidase

degrades human serum proteins and extracellular matrix

components [105], and the lipases hydrolyze the ester bonds

of mono-, di-, and triacylglycerols [88].

2.4. Phenotypic switching in C. albicans

Phenotypic switching helps C. albicans adapt to changing

environments at different anatomic loci in the host. Pheno-

typic switching enables C. albicans cells to spontaneously and

reversibly switch phenotypes at a high frequency. The most

studied switching system is the WO-1 strain, which alters

between white hemispherical colonies (designated as white,

W) and gray flat colonies (designated as opaque, O). WeO

switching also changes the shape and size of cells, their ability

to form hyphae, cell surface properties (e.g., adhesion and

permeability), membrane composition, protease secretion,

biofilm formation, sensitivity to phagocytes and oxidants,

antigenicity, drug susceptibility, andmetabolism [31,106e109].

Moreover, misexpression of the opaque-phase-specific gene

PEP1 in the white phase of C. albicans confers increased viru-

lence in amousemodel of cutaneous infection [110]. Amurine

model for systemic infection shows that considerably moreW

cells colonize the kidneys than O cells, and most of the cells

recovered from the kidneys switch from O to W [111].

C. albicans has long been designated as an asexual yeast;

however, there is a mating type-like locus (MTL) in the C.

albicans genome [112]. Interestingly, C. albicans strains with

subtle changes at the MTL locus can mate after inoculation

into a mammalian host [113]. Recent research has linked the

MTL toWeO switching. Only cells homozygous at theMTL can

switch from the W phase to the O phase and mate with other

O cells, producing progeny [114e116]. In addition, DNA

microarray analysis indicates that W and O cells have distinct

gene expression profiles [106] and Wor1 is a master tran-

scription regulator for WeO switching [117e120]. Deletion of

the WOR1 gene disables switching and locks the cells in the

white phase. Subsequent studies have identified additional

transcription factors (Wor2, Efg1, and Czf1) that function with

Wor1 in a network of feedback loops [121,122]. A sophisticated

regulatory network controls phenotypic switching. Pheno-

typic switching helps C. albicans survive within the host and

makes the cells become more virulent and effective during

infection.

2.5. Other factors related to C. albicans virulence

In addition to the factors discussed previously, other factors

are closely related to C. albicans virulence. One important

example is the ability of C. albicans to acquire iron from the

host during infection. Several types of evidence support the

correlation between iron acquisition and virulence. The iron-

free forms of host lactoferrin and transferrin inhibit cell
growth and render cells more susceptible to damage by

neutrophils [123]. Iron deprivation also affects the adhesive

properties and cell wall antigen compositions of C. albicans

cells [124,125]. The hypha-associated adhesin Als3 mediates

iron acquisition from host ferritin [126], and other cell surface

proteins including Rbt51 are involved in hemin and

hemoglobin-iron utilization [127]. Studies on suspension

cultures and biofilm cells indicate that iron availability affects

the drug resistance of C. albicans [124,128e131]. For example,

iron limitation contributes to the antifungal activity of ciclo-

pirox olamine, a topical antimycotic drug of the hydroxypyr-

idone class [132e134]. The siderophore transporter (Arn1) is

also required for epithelial invasion and penetration, and

endothelial cell injury caused by C. albicans is iron dependent

[135]. More importantly, the deletion mutants lacking the

high-affinity iron permease Ftr1 are unable to establish

systemic infection in mice, indicating that Ftr1-mediated iron

acquisition is an important factor in C. albicans virulence [136].

In response to iron availability, the control of iron acquisition

is complex and mediated by a regulatory circuit consisting of

transcription factors such as Sfu1, Hap43, and Sef1 [137e141].

2.6. Host responses to C. albicans

The interaction between a pathogen and its host is complex

and dynamic [142]. This is particularly true for a pathogen like

C. albicans, which can establish chronic, long-lasting, and

recurrent infections and persist in both latent and active

forms. To establish an infection, C. albicans adopts various

strategies to overcome host defense systems. These strategies

allow the pathogen to survive and proliferate within the host

by sensing and responding to host environments and by

expressing virulence factors. In response to the pathogen, the

host triggers defense mechanisms consisting of innate and

acquired (or adaptive) immunity.

2.7. Recognition between C. albicans and the host cell

The interaction of C. albicans and the host beginswith cellecell

recognition. In C. albicans, several cell wall components can

act as pathogen-associated molecular patterns (PAMPs).

These PAMPs include O- or N-linked mannans, man-

noproteins, a- or b-glucans, and chitin. Conversely, human

cells have pattern recognition receptors (PRRs) to recognize

pathogens and activate host defenses. Previous research has

described several PRR families including Toll-like receptors

(TLRs), C-type lectin receptors, Nacht-like receptors, RIG-like

receptors (RLRs), and the galectin family [143e146]. The

complexity of C. albicansehost interaction arises from the

manyways that PRRs recognize PAMPs. Although a PAMPmay

be only recognized by a particular PRR, other PAMPs can be

recognized by more than one PRR. For example, b-glucans can

be recognized by both Dectin-2 and TLR 2 [147], whereas PRRs

such as Dectin-2 are able to recognize more than one ligand,

including a-glucans and N-linked mannans [148]. Different

PRRs, such as TLR2 and Dectin-1, can work independently or

together [144,145,149]. The complexity of C. albicansehost

interaction is enhanced by the expression of different sets of

PRRs in various cell types and locations within the human

host. Phenotypic switching and morphological plasticity may

http://dx.doi.org/10.1016/j.biomed.2012.12.004
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also change the distributions of C. albicans cell-surface PAMPs

within distinct host niches.

2.8. Host innate immunity to C. albicans

The integration of innate and acquired responses protects the

host against pathogens. The innate system acts early during

infection, recognizing and destroying most pathogens.

Therefore, this article only focuses on some key points of

innate defenses against C. albicans. Discussion of other rele-

vant topics and acquired immunity is available in several

excellent reviews [150e154].

Many cell types including epithelial cells and phagocytic

cells such as polymorphonuclear neutrophils (PMNs), mono-

cytes/macrophages, and dendritic cells (DCs), are involved in

innate responses. During mucosal infections, the epithelium

provides the first line of defense against C. albicans, acting as

a passive physical barrier [155]. However, epithelial cells can

also activate immune responses and secrete antimicrobial

peptides such as b-defensins and human cathelicidin. Recent

studies have shown that LL-37, the active form of human

cathelicidin, inhibits C. albicans adhesion by interacting with

cell wall carbohydrates and the b-1,3-exoglucanase Xog1

[156,157]. In response to C. albicans, epithelial cells secrete

various proinflammatory cytokines and chemokines that

recruit and activate various immune cells, such as PMNs

[152,158]. The recruitment of PMNs is not only mediated by

epithelial cytokines and chemokines, but also by cytokines

from other cells and by other factors. For example, interleukin

(IL)-17 from T helper (Th)17 cells plays a crucial role in

recruiting neutrophils to the site of infection [159]. The

importance of Th17 cells in immunity to C. albicans has

recently been reviewed [160,161]. Granulocyte colony-stimu-

lating factor (G-CSF) and granulocyte-macrophage colony-

stimulating factor (GM-CSF) are also involved in the recruit-

ment and activation of PMNs [162e164]. Neutrophils can

effectively take up and kill C. albicans cells using oxidative

mechanisms, including the generation of reactive oxygen and

nitrogen intermediates [152,165]. Interestingly, neutrophils

prefer to attract and kill hyphae rather than yeast cells, by

activating extracellular signal-regulated kinase signaling

[166]. In addition to killing C. albicans through endocytosis,

neutrophil extracellular traps containing the antimicrobial

peptide calprotectin can also inhibit cell growth of C. albicans

[165].

Based on previous studies, neutrophils may account for

more of the innate immunity defense than mononuclear

phagocytes [167]. The elimination of mouse splenic macro-

phages results in a slower clearance of C. albicans from blood

[168]. However, another study has indicated that monocytes

or exudate macrophages do not play important roles in

resistance against C. albicans in systemic infection [169]. DCs

are antigen-presenting cells and the interface between innate

and acquired immunity [170]. These cells can ingest both

yeast and hyphal cells of C. albicans, leading tomaturation and

activation of DCs to present Candida-specific antigens [171].

DCs can also induce the differentiation of Th cells. The

ingestion of yeasts primes Th1 cells, whereas hyphae inhibit

IL-12 and Th1 differentiation and favor Th2 differentiation

[155,172]. Th1 cells then secrete tumor-necrosis factor-b and
interferon-g to recruit other leukocytes to the site of inflam-

mation. In contrast, Th2 cells produce cytokines, such as IL-4,

to promote the synthesis of IgE in B cells [172].
3. Postgenomic approaches to studying
C. albicans and its interactions with the host

3.1. Whole genome sequencing of C. albicans and
non-albicans Candida spp.

The genome sequencing of the SC5314 strain was a significant

and recent achievement in studying C. albicans [173] and

a human-curated annotation for the Candida genome is now

available [174]. Genome sequencings of various strains of C.

albicans and several non-albicans Candida spp. have also

emerged recently [175e178]. These genome sequences

provide a great challenge and opportunity for genome

comparisons. This genome information can be accessed on

the internet-based Candida Genome Database (CGD; http://

www.candidagenome.org).

The development of new and more efficient strategies for

genetic analysis has also promoted the study of C. albicans.

Examples include the genome-wide construction of deletion

mutants [179e183], and emerging technologies for global

measurement of steady state mRNA concentrations [184] and

protein expression levels/phosphorylation states [185e187].

With this armamentarium of methods and technologies,

researchers are better able to develop C. albicans as an easily

accessible model for understanding mechanisms in opportu-

nistic fungal pathogenesis and fungal pathogenehost inter-

action. This review presents several developments in

methodologies and technologies for studying C. albicans as

follows.

3.2. Transcriptional profiling by DNA microarray, RNA-
seq and others

DNA microarray-based studies have been used to study

various aspects of C. albicans biology, physiology, and patho-

genesis. Some of these studies were related to morphogenesis

[188e190], susceptibility to antifungal drugs [191,192],

signaling and stress responses [95,193e195], metabolism

[139,140,196,197], mating type [198,199], phenotypic switching

[106], biofilms [200e202], and cell responses to environmental

changes [203].

Meanwhile, microarray analysis has begun to show the

interactions of C. albicans with different host cells [204,205].

Gene expression is detected in the pathogen side during

pathogenehost interactions. For example, C. albicans genes

encoding the key enzymes of the glyoxylate cycle and proteins

with nonmetabolic functions are upregulated when the

pathogen is ingested by a mammalian macrophage [205,206].

After challenging with human blood, C. albicans expresses

unique sets of genes at different stages of the model,

mimicking bloodstream infections. The functions of these

genes are related to the general stress response, antioxidative

response, glyoxylate cycle, and virulence attributes [204]. A

previous study has analyzed the transcriptome of C. albicans

isolated from the mammalian kidney [207]. Compared to the

http://www.candidagenome.org
http://www.candidagenome.org
http://dx.doi.org/10.1016/j.biomed.2012.12.004
http://dx.doi.org/10.1016/j.biomed.2012.12.004


B i oM e d i c i n e 3 ( 2 0 1 3 ) 5 1e6 456
control cells, C. albicans from infected tissues shows upregu-

lation of genes related to adhesion, stress responses, and the

assimilation of alternative carbon sources. However, genes

involved in morphogenesis, fermentation, and translation are

downregulated [207]. In addition, the basic leucine zipper

(bZIP) transcription factor Rca1 activates C. albicans carbonic

anhydrase during contact with mammalian phagocytes [208].

Moreover, gene expression for the host side is also detected

when pathogenehost interactions occur. For example, human

DCs sense diverse pathogens of C. albicans, Escherichia coli, and

influenza virus, and elicit pathogen-specific immune

responses [209]. With the treatment of C. albicans cell wall b-

glucan, human leukocytes activate genes that relate to various

categories, including those that encode effectors with proin-

flammatory properties [210]. A study of Candidaegranulocyte

interaction has shown that C. albicans modulates the HL60

granulocytoid response by downregulating known antimi-

crobial genes at a high pathogenehost ratio [211]. Endothelial

cells respond differently to low and high densities of C. albi-

cans [212]. In response to heat-killed C. albicans, miRNA tran-

scription in macrophages is differentially regulated to

modulate PRR signaling [213]. Experimental keratomycosis

shows that TLR and proinflammatory chemokines are differ-

entially regulated in murine corneas with C. albicans inocula-

tion [214,215].

Except for using DNA microarrays alone, chromatin

immunoprecipitation coupledwithmicroarray analysis (ChIP-

chip) have also recently been developed to study in vivo pro-

teineDNA association in C. albicans at the whole genome level.

Some examples include studies of transcriptional control of

WeO switching [122], the regulation of gene expression of

ribosome proteins and carbohydrate metabolism [196,216],

and the regulation of morphogenesis by the transcription

factors Efg1 and Hms1 [217,218],

RNA-seq (deep-sequencing of cDNA) has been used to

identify novel transcribed regions, detect new splicing events,

and quantify gene expression [219e223]. This method reduces

some common concerns in using DNA microarray such as

platform-related effects, and is significantly more sensitive

than amicroarray. More recently, this approach has been used

to study C. albicans and its interaction with host. Bruno et al

have used RNA-seq to generate a high-resolution map of the

C. albicans transcriptome, to determine all the regions tran-

scribed under various environmental conditions [224]. They

have identified 602 novel transcriptionally active regions in

the genome; many of which are expressed in a condition-

specific manner. They also have shown several novel introns

not present in the current genome annotation [224]. The RNA-

seq technology has also been used to compare the tran-

scriptomes of a drug-resistant clinical isolate and its isogenic

drug-sensitive counterpart [225]. There are 228 genes differ-

entially expressed, and many of them have never been linked

to the phenotype of drug resistance. The acquisition of drug

resistance is also correlated with an overexpression of the

CZF1 gene, which encodes a transcription factor. The czf1-

deleted mutants are susceptible to many drugs, indepen-

dently of known multidrug resistance mechanisms [225].

Tierney et al have demonstrated the use of RNA-seq to profile

simultaneously genome-wide gene expression of both

C. albicans and the host [226]. Although each technology of
DNA microarray, ChIP-chip and RNA-seq is powerful in

studying C. albicans and its interaction with the host,

combined tools have been used to study the complex tran-

scription network in regulation of C. albicans biofilm devel-

opment [227].

3.3. Proteomic research

Several researchers have reviewed the use of the proteomic

approach in studying C. albicans and its interaction with the

host [185e187,228e230], and this article highlights only a few

recent applications. The C. albicans cell wall consists of poly-

saccharides and many integral and covalently attached

proteins. Proteomic approaches make it possible to study the

C. albicans cell wall in detail. For example, the cell wall pro-

teome is affected by hypoxic conditions, iron restriction,

ambient pH, and hyphal growth [231e233]. Moreover, many

antifungal drugs target C. albicans. The proteomic approach

also shows the effects of fluconazole on cell wall proteome

and integrity [234]. It seems that C. albicans adapts to the

environmental conditions by changing the protein composi-

tion of its cell wall, and some cell wall proteins identified may

be candidates for vaccine development [235]. After interaction

with heat-killed C. albicans, proteins differentially expressed

in murine macrophages are shown by comparison to the

control. These proteins function in various cellular processes,

including cytoskeletal organization, signaling, metabolism,

protein synthesis, and stress response. Many of them are

known to be involved in the inflammatory process [236]. The

responses of murine macrophages are further analyzed using

live cells of C. albicans and enriched fractions of cytosol,

organelle/membrane, and nucleus from the macrophages.

This study has identified 17 new differentially expressed

proteins, including two mitochondrial proteins, a membrane

receptor, galectin-3, and several endoplasmic-reticulum-

related proteins [237]. These proteins are also involved in the

proinflammatory and oxidative responses, immune response,

unfolded protein response, and apoptosis. These processes

may increase the host response to the pathogen or may arise

from C. albicans resistance to phagocytosis [237].

3.4. Network and systems biology

Although understanding the functions of individual genes and

proteins remains necessary, the importance of studying the

structure and dynamics within a cell or an organism has

become increasingly recognized. In a single cell or an

organism, genes and proteins not only function individually,

but also form networks with interconnectivity between genes

and proteins in response to environmental conditions [238].

Systems biology approaches aim to understand networks

such as those that regulate signaling, metabolism, and gene

transcription, showing the basis of gene or protein interac-

tions. Furthermore, systems biology studies correlate biolog-

ical networks with various cellular processes. In the past few

years, methodologies of network and systems biology have

been used to study C. albicans and its interaction with the host

[226,239e241]. This review presents several recent cases to

illustrate how approaches of network and systems biology can

be used to study C. albicans and pathogenehost interactions.

http://dx.doi.org/10.1016/j.biomed.2012.12.004
http://dx.doi.org/10.1016/j.biomed.2012.12.004


B i oM e d i c i n e 3 ( 2 0 1 3 ) 5 1e6 4 57
Case 1. An integrative systems biology approach to show

the regulation of C. albicans adaptation to thermal conditions.

C. albicans lives in warm-blooded animals, and the heat shock

response is essential for its survival. This response is also

correlated to C. albicans infection [242]. For example, the heat

shock protein Hsp90 orchestrates temperature-dependent

morphogenesis, which is an important virulence factor of

C. albicans [243]. Mutations blocking the activity of the heat

shock transcription factor Hsf1 prevent thermal adaptation

and significantly reduce C. albicans virulence [244]. However,

the detailed mechanisms of thermal adaptation in C. albicans

are still not yet fully understood. This study presents

a dynamic model of heat shock adaptation, followed by

experimental validation. Results indicate that Hsf1 and the

chaperone protein Hsp90 are dynamically autoregulated [245].

In addition, this model shows that Hsf1 is activated during

thermal transitions that mimic fever, and also explains

evolutionary conservation of the heat shock response in

C. albicans [245].

Case 2. A cellular network approach to predict genes

associated with phenotypes during mucosal infection of

C. albicans. Mucosal infections caused by C. albicans can be

roughly divided into three stages: adhesion, invasion, and

host cell damage [89,184]. Using a cellular network approach,

a recent study has aimed to predict phenotype-associated

genes during these three stages and their roles in C. albi-

cansehost interactions. Assumptions applied to this study are

that proteins that lie closer to one another in a protein inter-

action network are more likely to have similar functions, and

that genes regulated by the same transcription factors tend to

have similar functions [246]. From this study, 19 genes have

been identified to relate to adhesion-, invasion-, and damage-

associated functions. Moreover, the predicted genes suggest

that cell surface components are critical for cell adhesion, and

morphogenesis is crucial for cell invasion [246].

Case 3. Identification of the hubs in regulatory networks of

C. albicans. Within a biological network, hubs are the nodes

with high connectivity (degree) and play significant roles in

maintaining topology and functional flow of the network.

Removing hubs may break the network and makes the hubs

potential drug targets or biomarkers for developing a new

therapy. In a recent study, scale-free gene regulatory

networks have been inferred to identify hubs from collections

of gene expression data of C. albicans [247]. One hundred and

twenty-six genes with an outward degree of at least seven are

further examined, including 16 hubs sensitive to antifungal

treatment [147]. In addition, the transcriptional network

controlling biofilm formation is also inferred using combined

information from genetic screenings, genome-wide

approaches, and two animal models. The network consists

of six transcription regulators that control approximately 1000

target genes [227].

Case 4. A robust network inference map to predict inter-

actions between pathogen and host. This study presents an

inferred regulatory network to predict novel interactions

between C. albicans andmouse DCs during phagocytosis [226].

Results indicate that the subnetworks comprising the tran-

scription factor Hap3 in C. albicans, and pentraxin (Ptx3) and

metastasis-associated protein (Mta2) in the host cell are

interdependent. C. albicans Hap3 is a component of the
CCAAT-binding complex, which regulates gene expression.

Murine Ptx3 is a soluble PRR that acts as an endogenous

modulator of the inflammatory response. Murine Mta2 is

a component of a nucleosome remodeling deacetylase

complex, involved in transcriptional regulation. To verify the

predictions from network inference, recombinant Ptx3 has

been prepared and found to bind to the cell wall of C. albicans

and to alter expression of Hap3 target genes. Moreover, C.

albicans preincubated with recombinant Ptx3 significantly

attenuates the expression of Mta2-regulated cytokines, such

as IL-2 and IL-4, in a Hap3-dependent manner. Together, this

study indicates that the pathogenehost interplay can cause

remodeling of the pathogen and the pathogen affects the host

immune response. This study demonstrates the usefulness of

the systems biology approach to decipher mechanisms of

microbial pathogenesis [226].
4. Conclusions

The interactions between C. albicans and host are critical for

persistence and pathogenesis of the pathogen and the

immune defense of the host. To establish infection success-

fully, C. albicans uses multiple ways to attach, colonize, and

even penetrate the host tissues. For example, cell surface

adhesins, hyphae formation, and secreted hydrolytic

enzymes are associated with these processes. Phenotypic

switching also helps C. albicans adapt to changing environ-

ments within the host. To recognize C. albicans, different host

cells have developed diverse PRRs that function indepen-

dently or synergistically. Consequently, the host triggers

immune responses to defend against C. albicans. This review

presents an outline of several important topics on these

processes. With the complement of the genome sequences of

C. albicans and humans, the development of genome-wide

technologies for analyzing pathogenehost interactions has

dramatically increased. These developments will no doubt

broaden our view of the pathogenehost relationship and the

processes during infection. A better understanding of C. albi-

cansehost interactions will provide important insights for

other fungal pathogens.
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[52] Dabas N, Morschhäuser J. Control of ammonium permease
expression and filamentous growth by the GATA
transcription factors GLN3 and GAT1 in Candida albicans.
Eukaryot Cell 2007;6:875e88.
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