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1.	 Introduction

Professor Yoshinori Ohsumi, the 2016 laureate in Physiology or 
Medicine, discovered the mechanisms for autophagy [1-4].  This 
pathway plays a crucial role in physiological cellular homeostasis 
and human diseases [5].  Autophagy has been known to serve 
as a double-edged sword for promoting survival character and/
or activating cell death (Fig. 1) [6-11].  In addition, autophagy, a 
catabolic process, degrades cellular components and damaged or-
ganelles [12, 13].  Recently, autophagic machinery is involved in 
the pathophysiology of type 2 diabetes mellitus (T2DM) disease, 
and it regulates normal function of pancreatic beta cells.  On the 
other hand, enhanced autophagy acts as an important protective 
mechanism against to oxidative stress on insulin-target tissues 
such as liver, adipose tissue and skeletal muscle [14-19].  In this 
review, we outline the relationship among autophagy, pancreatic 
beta cells and T2DM.  Furthermore, we highlight recent findings 
on the novel agents to specifically target autophagy in T2DM.

  †	These authors contributed equally to this work.
  *	Corresponding author. Department of Medical Research, China Medical University Hospital, China Medical University, No. 2, Yuh-

Der Road, Taichung 404, Taiwan.
	 E-mail address: d0704@mail.cmuh.org.tw (F.-J. Tsai).

Keywords:
Autophagy; 
Type 2 diabetes mellitus 
(T2DM); 
Pancreatic β-cells; 
Insulin resistance

ABSTRACT

Autophagy, a double-edged sword for cell survival, is the research object on 2016 Nobel Prize in Physiology 
or Medicine. Autophagy is a molecular mechanism for maintaining cellular physiology and promoting sur-
vival.  Defects in autophagy lead to the etiology of many diseases, including diabetes mellitus (DM), cancer, 
neurodegeneration, infection disease and aging.  DM is a metabolic and chronic disorder and has a higher 
prevalence in the world as well as in Taiwan.  The character of diabetes mellitus is hyperglycemia resulting 
from defects in insulin secretion, insulin action, or both.  Type 2 diabetes mellitus (T2DM) is characterized 
by insulin resistance and failure of producing insulin on pancreatic beta cells.  In T2DM, autophagy is not 
only providing nutrients to maintain cellular energy during fasting, but also removes damaged organelles, 
lipids and miss-folded proteins.  In addition, autophagy plays an important role in pancreatic beta cell dys-
function and insulin resistance.  In this review, we summarize the roles of autophagy in T2DM.

2.	 Programmed cell death (PCD)

PCD is an important physiological process during organ develop-
ment, tissue homeostasis.  This process is a protective mechanism 
against cellular stress, drug, external environment and tumor sup-
pressive mechanism.  It is generally divided into three distinct 
types including: (1) apoptosis; (2) autophagic cell death; and (3) 
necroptosis.  Each type of cell death exhibits the specific morpho-
logical, molecular and biochemical characteristics [20].  We sum-
mary the characteristics of the three types as listed in Table 1.

Apoptosis (Type I PCD) is characterized by chromatin con-
densation, DNA fragmentation and laddering, blebbing of nuclear 
or cytoplasmic and apoptotic bodies [21].  Apoptotic pathways 
include death-receptor pathway (extrinsic pathway), mitochon-
drial pathway (intrinsic pathway), endoplasmic reticulum (ER) 
stress, caspase-dependent pathway and caspase-independent path-
way [22-27].  In the death-receptor pathway (extrinsic pathway), 
cell death is mediated by the interaction between death receptor 
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tive oxygen species (ROS) and release of cytochrome c, Apaf-1, 
procaspase-9, AIF and Endo G signaling.  The cytochrome c, 
Apaf-1 and procaspase-9 form an apoptosome complex to activate 
caspase-9 and caspase-3/-7.  In addition, pro-apoptotic Bcl-2 fam-
ily proteins (such as Bax, Bak, Bim, Bid, etc.) and anti-apoptotic 
proteins (such as Bcl-2, Bcl-xL, Mcl-1, etc.) regulate the process 
of mitochondrial pathway [33-41].  ER stress is induced by accu-
mulation of unfolded/misfolded protein aggregating in ER or by 
excessive protein traffic. Increasing the proteins level of GADD 
153, GRP 78, GRP 94 and ATF6, the hallmarks of ER stress, in-
duce a rise in intracellular Ca2+ level, mitochondrial membrane 
depolarization and activation of calpain and caspase-12 in murine 
systems and/or caspase-4 in human cells [29, 36, 42-45].

Autophagic cell death (type II PCD) is a process by eliminat-
ing intracellular components through the lysosomal degradation 
in eukaryotic cells.  Autophagy was first discovered during the 
late 1950s and early 1960s [46-48].  In the 1990s, the essential 
genes of the autophagy pathway were identified and characterized 
by the genetic screen studies in baker’s yeast [49, 50].  Autophagy 
has been demonstrated to be involved in many biological pro-
cesses, including maintenance of organelle integrity, protein qual-
ity control, regulation of the stress response and immune response 
[51-62].  Recently, autophagy has been shown to be modulated 
and to participate in the pathogenesis of human diseases, such 
as DM, neurodegenerative diseases, aging, pathogen infection 
diseases, vascular disease, pulmonary disease and cancer (Fig. 2) 
[13, 63-68].  Dr. Yoshinori Ohsumi discovered autophagy-related 
genes (ATGs) using a genetic screening approach in Saccharomy-
ces cerevisiae and awarded the 2016 Nobel Prize in Physiology or 
Medicine for his remarkable contribution to autophagy research [1, 
4, 69-71].

Autophagy is characterized by an increase of double-mem-
brane vesicles (also known as autophagosomes or autophagic 

proteins (such as Fas/CD95, DR4 and DR5) and the ligand (such 
as FasL and TRAIL), resulting in the staffing of an adaptor pro-
tein (FADD) and activation of caspase-8 and caspaswe-3/7 [22-
32].  Mitochondria plays an essential role in the intrinsic pathway, 
which is inactivated by a drug or stress and then disrupts the 
mitochondrial membrane potential, causing production of reac-

Promote survival

Stress stimulation

Stress overstimulation

Activate cell death

Autophagy

Fig. 1 - Autophagy serves as a double-edged sword.  Auto-
phagy promotes survival character when cells undergo stimuli 
and/or activates cell death when stimuli exceed a threshold.

Table 1 − The characteristic features of programmed cell death [20].
Programmed cell  
death (PCD)

Apoptosis (type I PCD) Autophagic cell death (type II PCD) Necroptosis (type III PCD)

Feature

Chromatin condensation Autophagic vesicles Random 
DNA degradation

DNA laddering Blebbing Swollen organelles
Blebbing 
(nuclear, cytoplasmic) Degradation of golgi

Cytoplasmic membrane rupture

Apoptotic bodies Potent inflammatory response

Key regulators

Caspases Beclin-1 RIPK1 

Bcl-2 family members LC III TRAF2
Cytochrome c Atg family proteins PARP 
AIF

CalpainsDeath-receptor proteins ULK 1
Calpains mTOR

Relative pathways

Death-receptor
Pathway
(extrinsic pathway)

AMPK pathway Glycosylphospha-tidylinositol  
anchor biosynthesis

Mitochondrial pathway
(Intrinsic pathway)

Akt/mTOR pathway Type 1 interferon family

ER stress pathway MAPK/ERK pathway
Toll-like receptor signaling networkCaspase-dependent pathway p53/stress pathway

Caspase-independent pathway ER stress pathway
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vesicles) and degradation of golgi.  Autophagy promotes cell sur-
vival in response to stress; however, once autophagy is overstimu-
lated, cells can progress to autophagic cell death (Fig. 1).  Here, 
we propose clearer definitions of the roles on autophagy: (A) the 
first role of autophagy functions as cell survival or cell protection 
[72-75].  (B) the second role of autophagy mediates programmed 
cell death (autophagic PCD).  Upon stress, early-onset autophagy 
triggers cell protection and then late-onset autophagy induces cell 
death [76-80].  The detailed molecular mechanisms of autophagy 
will be described later. 

Necroptosis (type III PCD), an irreversible cell death [81, 
82], is characterized by a gain in cell volume, swollen organelles, 
DNA degradation, cytoplasmic plasma membrane rupture, sub-
sequent loss of intracellular contents and potent inflammatory 
response.  Relative necroptosis pathways include glycosylphos-

phatidylinositol anchor biosynthesis pathway, type 1 interferon 
family pathway and toll-like receptor signaling pathway (Table 
1) [20].  The protein kinase RIP1 and RIP3 are central molecules 
in necroptosis.  The RIPK1, TRAF2, PARP, calpains and RIPK3 
proteins are identified and associated with programmed necrosis 
[83-89].

3.	 Assays for monitoring autophagy and pharma-
cological regulated agents

The features of autophagy are the massive accumulation of au-
tophagic vacuoles (autophagosomes) in the cytoplasm of cells.  
Hereby, we present a series of methods to monitoring autophagy 
in Table 2.  (1) Transmission electron microscopy (TEM) is used 
to observe autophagosome number, volume, and content analysis; 
(2) The lysosomal enzymes activity, assessment of the number, 
size, and location of lysosomes are examined by the uptake of 
fluorescent dyes (monodansylcadaverine (MDC), acridine orange 
(AO), neutral Red, LysoSensor Blue, Lyso-Tracker Red); (3) 
Autophagy-related proteins such as ATGs and LC3 are detected 
by western blotting or fluorescent protein tagging; (4) Autophagy-
related gene expression levels are measured by western blotting 
or real-time PCR.  Table 3 is a list of the pharmacological agents 
for assessing autophagy effects such as inhibition of lysosomal 
enzyme activities, fusion of organelles, or inter-compartmental 
transfer of molecules.  (1) The 3-methyladenine (3-MA) is a 
PtdIns3K inhibitor and blocks an early stage of autophagy.  (2) 
Bafilomycin A1 is a V-ATPase inhibitor and blocks fusion of 
autophagosomes with the vacuole.  (3) Chloroquine is a lysoso-
motropic compound that elevates and neutralizes the lysosomal 
and vacuolar pH.  (4) Leupeptin blocks lysosomal protein deg-
radation.  (5) Pepstatin A inhibits lysosomal protein degradation.  
(6) Resveratrol induces autophagy through activation of AMPK 
and (7) Tunicamycin is a glycosylation inhibitor that induces au-
tophagy [55, 90, 91].

Table 2 − Assays for monitoring autophagy.
Description Methods Reference

Monitor autophagosome number, volume, and content/cargo Transmission electron microscopy (TEM) [59, 146, 147]

Atg8/LC3 detection and quantification

Western blotting [59, 146, 147]

GFP-Atg8/LC3 fluorescence microscopy [59, 146, 147]

Immunohistochemistry [59, 146, 147]

Additional autophagy-related protein markers

Western blotting [55, 56, 59, 60, 
62, 146, 147]

Real-time PCR [55, 56, 59, 60, 
62, 146, 147]

Immunohistochemistry [55, 56, 59, 60, 
62, 146, 147]

Transcriptional regulation Real-time PCR [55, 56, 59, 60, 
62, 146, 147]

Acidotropic dyes for identify acidified vesicular compartments

Monodansylcadaverine (MDC) [59, 146, 147]

Acridine orange (AO) [59, 146, 147]

Neutral Red [59, 146, 147]

LysoSensor Blue [59, 146, 147]

Lyso-Tracker Red [59, 146, 147]

Metabolic
disease

Metabolic
disease

Neuro-
degenerative

Neuro-
degenerative

AgingAging

Infectious
diseases
Infectious
diseasesVascular

disease
Vascular
disease

AutophagyAutophagy

Pulmonary
disease

Pulmonary
disease

CancerCancer

Fig. 2 - Autophagy participates in the pathogenesis of 
human diseases.  These human disorders include DM, 
neurodegenerative diseases, aging, pathogen infection 
diseases, vascular disease, pulmonary disease and cancer.
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4.	 The molecular mechanisms of autophagy

There are four stages in the autophagic process: (1) induction, (2) 
vesicle nucleation, (3) autophagosome membrane elongation and 
(4) termination/ fusion and degradation l (Fig. 3) [92, 93].  In the 
normal status such as adequate nutrition, the mTORC1 complex 
(mTOR/GβL/Raptor/PRAS40) interacts with the ULK1 complex 
(ULK1/2-Atg13-FIP200-Atg101) to inhibit autophagy.  When 
the mTORC1 complex senses genotoxic stress from hypoxia, 
starvation and low energy levels, mTORC1 dissociates from the 
ULK1 complex and initiates autophagy. Recent evidence suggests 
that mTORC1 complex is also regulated by PI3K-1/Akt, MAPK/
ERK and AMPK signaling pathway.  Activated AMPK phospho-
rylates Raptor and inhibits mTOR, which leads to activation of 
autophagy [94-98].

Beclin-1 complex (PI3Kinase class III, p150, Beclin-1 and 

Atg14) is essential for vesicle nucleation and stimulates the fusion 
of autophagosomes with lysosomes [94-98].  During the stage of 
vesicle nucleation, Beclin-1 interacts with Atg14L, Bcl2, Rubi-
con, p150 and PI3Kinase class III proteins.  Several regulators 
such as Bcl-2 protein (anti-apoptotic protein) and Rubicon bind 
Beclin-1 and inhibit the vesicle nucleation stage of autophagy.

Autophagosome membrane engagement is executed by the 
Atg12 and LC3 ubiquitin-like conjugation systems. (1) Atg12 
ubiquitin-like conjugation system: ubiquitin-like Atg12 is conju-
gated to Atg5, Atg7 and Atg10.  Atg10 serves as the E2 enzyme.  
The Atg5-Atg12/Atg16L complex is regulated by the Beclin-1 
complex and localizes to the convex surface of the isolation mem-
brane.  (2) LC3 ubiquitin-like conjugation system: LC3 is cleaved 
by the Atg4 cysteine protease, sequentially processed by Atg7 and 
Atg3 and then conjugated to the membrane lipid phosphatidyle-
thanolamine (the conjugated form is termed LC3-II).  The Atg5-
Atg12/Atg16L1 complex is necessary to promote the transforma-

Table 3 − Pharmacological regulation of autophagy.
Method Comments Reference

3-Methyladenine (3-MA) The PtdIns3K inhibitor and blocks an early stage of autophagy [60, 62, 90, 91]

Bafilomycin A1 The V-ATPase inhibitor and blocks fusion of autophagosomes  
with the vacuole [58, 62, 90, 91, 148]

Chloroquine Lysosomotropic compounds that elevate and neutralize  
the lysosomal and vacuolar pH [58, 90, 91]

Leupeptin Block lysosomal protein degradation [90, 91]
Pepstatin A Block lysosomal degradation [90, 91]
Tunicamycin The glycosylation inhibitor that induces autophagy [90, 91]
Resveratrol Induction of autophagy via activation of AMPK [55, 90, 91]

PI3K-1/Akt MAPK/ERK

pathway pathway

Membrane nucleation

PE

Phagophore

ATP
AMP

ER stress

Genotoxic Stress

Upstream signaling
processes

Autophagosomal
formation

(A) Induction

(D) Termination

(C) Elongation

(B) Nucleation

SequestrationApoptosis

Autophagosome
Autophagolysosome

Autophagy

AMPK

mTOR
Raptor

PRAS40

Atg 101

Lysosome
Lysosome

FIP200
Atg 13

Atg 14

Atg 5

Atg 5
Atg 7

Atg 10

Atg 4
LC3

LC3 I

LC3 II

Atg 3

Atg 12

Atg 7Atg 12

Atg 16L1

Atg 16L1

p 150

Bcl-2

Rubicon

Beclin-1

PI3 Kinase
class III

GβL

ULK 1

Fig. 3 - There are four stages in the autophagic process: (1) induction, (2) nucleation, (3) elongation and (4) termination.
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tion of LC3-I to LC3-II [94-98].
At the terminal stage of autophagy, the autophagosome fuses 

with lysosomes to form autophagolysosomes.  Autophagy allows 
the orderly degradation and recycling of cellular components [99].  
The purpose of autophagy is to ensure quality control of organ-
elles and proteins, as well as protection of intracellular homeosta-
sis in stress and nutrient efficiency [94-99].

5.	 Type 2 diabetes mellitus (T2DM)

Diabetes mellitus (DM), commonly referred to as diabetes, is a 
metabolic and chronic disease in the world [100, 101].  DM pa-
tients have high blood sugar levels over a prolonged period.  The 
character in DM is a relative or absolute lack of insulin, result-
ing in hyperglycemia [102].  Symptoms of hyperglycemia are 
frequent urination, increased thirst, and increased hunger.  Acute 
complications of DM can include nonketotic hyperosmolar coma, 
diabetic ketoacidosis and death.  Serious complications of DM in-
clude cardiovascular disease, stroke, chronic kidney failure, neph-
ropathy, foot ulcers, neuropathy and damage to the eyes [103-106].  
In 2014, approximately 422 million people were diagnosed with 
DM according to World Health Organization (WHO) report [107, 
108].  In Taiwan, DM is ranked as the fifth leading cause of death 
in 2015 on the basis of statistics by the Ministry of Health and 
Welfare, R.O.C. (Taiwan) [101, 109].

There are three main types of diabetes mellitus: (1) Type 1 
diabetes (T1D): also called insulin-dependent, juvenile or child-
hood-onset diabetes.  T1D is characterized by deficient insulin 
production in the body.  The pathology in T1D is described as an 
autoimmune disease because the pancreatic beta cells (insulin-
producing tissue) are destructed in the islets of Langerhans [110].  
T1D is diagnosed most in children and young adults. People 
with T1D require daily administration of insulin to regulate the 
amount of glucose in their blood [111].  Environmental factors 
and genetic influence play an important role in T1D [112, 113].  
(2) Type 2 diabetes (T2D): formerly called non-insulin-dependent 
(NIDDM) or adult onset diabetes. T2D is the most common type 
of diabetes with prevalence in Taiwan.  T2D begins with insulin 
resistance in which cells fail to respond to and uptake of insulin in 
the body [114-116].  Insulin resistance can be enhanced by weight 
reduction and exercise [117].  (3) Gestational diabetes: pregnant 

women without a previous history of diabetes develop high blood 
sugar levels [118, 119].

The physiological defects in T2D that is reduced insulin sen-
sitivity, insulin resistance and combined with impaired insulin 
secretion (Fig. 4).  T2D occurs as a result of obesity, poor diet, 
physical inactivity, increasing age, family history and ethnic-
ity.  The defective or mutant insulin receptor may be caused no 
response to insulin in body tissues.  Controversially, patients with 
T2D in the early stage often have a normal or high bone mineral 
density (BMD), associated with obesity and hyperinsulinemia, as 
well as altered level of insulin.  When cells are insensitive to insu-
lin (or insulin resistance), the pancreatic beta cells produce more 
and more insulin, which leads to the higher insulin concentration 
in blood (hyperinsulinemia).  The pancreatic beta cells desper-
ately secrete insulin and then gradually decline.  T2D at late stage 
is characterized by insufficient secretion of insulin from the pan-
creatic beta cells, coupled with impaired insulin action in target 
tissues such as muscle, liver and fat.  Hyperglycemia results when 
insulin secretion is unable to compensate for insulin resistance 
[120-124].  Mechanisms in the development and pharmacological 
treatments of T2D are summarized in Fig. 5 and Table 4.

6.	 Autophagy and type 2 diabetes (T2D)

Autophagy has been known to regulate the function of pancreatic 
beta cells and insulin-target tissues (skeletal muscle, liver and 
adipose tissue).  T2D progression through impaired pancreatic 
beta cells function and development of insulin resistance has been 
associated with autophagy [125-128].  Upon insulin resistance, 
pancreatic cells enhance their insulin secretion (hyperinsuline-
mia) to compensate for hyperglycemia on the early onset of T2D 
(Fig. 5).  In contrast, the number of pancreatic cells is progressive 
diminution through apoptotic cell death on the late onset of T2D 
[125, 129-131].

Many studies suggest that enhanced autophagy acts as a pro-
tective mechanism against oxidative stress in pancreatic beta cells 
[128, 132]. In vivo studies demonstrated that Atg7-deficient mice 
showed a decrease in the number of pancreatic beta cells, impair-
ment of glucose tolerance and reduction in insulin secretion [133].  
The insulin resistant mice (beta-cell-specific Atg7 knockout mice) 
model has been shown that autophagy plays a crucial role in the 
development of diabetes and in preserving the structure and func-
tion of pancreatic beta cells.  Accumulation of autophagosomes 
in the pancreatic beta cell has been demonstrated in db/db mouse 
model [134-136].  Fujitani et al. showed that reduced insulin se-
cretion was associated with pancreatic beta cell degeneration and 
impaired glucose in autophagy-deficient mice [136-138].  How-
ever, constitutively activated autophagy has injurious effects on 
pancreatic beta cells and chronic activation of autophagy causes 
autophagic cell death [135, 139-143].

9.	 Conclusion

The pancreatic beta cells control the releases of insulin and play 
an important role in the progression of T2D.  Autophagy might 
function as a protective and pro-survival role on pancreatic beta 
cell death in T2D.  Metformin has been widely used in the clinic 
therapy in T2D and has a protective effect on pancreatic beta cells 
from injury by activating autophagy through AMPK pathway 
[144, 145].  Therefore, it is urgent to understand the relationship 

Type 2 Diabetes
(T2D)

Impaired insulin
secretion

Insulin resistance

Obesity

Poor diet

Physical inactivity

Increasing age

Family history

Ethnicity

Fig. 4 - Etiology of type 2 DM.  Two major physiological 
defects associated with T2D are reduced insulin sensitivity, 
insulin resistance and combined with impaired insulin 
secretion.  Obesity, poor diet, physical inactivity, increasing 
age, family history and ethnicity lead to a higher risk of T2D.
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of autophagy and T2D.  We summarize the role of autophagy and 
apoptosis in T2D in Fig. 6.  It is expected to develop new drugs 
and more effective agents targeted in autophagy for the therapy of 
T2D.
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