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Obsessive compulsive disorder (OCD) is a prevalent and debilitating illness that often

follows a chronic course. Up to 40% of OCD patients received little or no benefit from

currently available pharmacotherapy or exposure-based behavior psychotherapy. Thus,

there is an urgent need to develop new strategies for the treatment of OCD. Although the

neurobiology and etiology of OCD are not completely understood, growing clinical and

preclinical evidence appears to support the abnormalities of glutamatergic neurotrans-

mission, including N-methyl-D-aspartate subtype receptor (NMDAR) function, in the

pathophysiology and treatment of OCD. This review summarizes the findings from neuro

imaging, candidate genes, animal models, and treatment studies in the context of gluta-

matergic dysregulation, with particular emphasis on the synaptic NMDAR function. The

converging evidence indicates the potential of glutamate-modulating agents in the

development of novel treatment for OCD.

Copyright ª 2012, China Medical University. Published by Elsevier Taiwan LLC. All rights

reserved.
1. Introduction OCD responded to currently available pharmacotherapy and
Obsessive compulsive disorder (OCD) is characterized by

intrusive thoughts or images (obsessions) that increase

anxiety and by ritualistic behaviors (compulsions) that can

temporarily relieve such anxiety. OCD is a debilitating

psychiatric disorder estimated to affect 2%e3% of the world

population [1]. Unfortunately, only 40%e60% of patients with
chiatry, Harbor Medical C
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exposure-based psychotherapy, and a great proportion of

treatment responders remained markedly ill [2]. There is an

urgent need to develop novel strategies for OCD patients who

are inadequately responsive to currently available therapies.

Although clinical experience and research of OCD have

mostly focused on the serotoninergic and dopaminergic

systems (see refs [3e5]), convergent lines of evidence support
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an important role of the glutamatergic system in the patho-

physiology and treatment of OCD (see refs [6,7]]. In this

review, we will focus on recent finding on the N-methyl-D-

aspartate (NMDA) subtype receptor (NMDAR) function in OCD.
2. Clinical studies with glutamate-
modulating agents on the treatment of OCD

Preliminary case reports and small open trials showed that

resistant OC symptoms might benefit from adjunctive

nonselective glutamate antagonists such as riluzole [8e10],

topiramate [11], and lamotrigine [12,13]. In three case reports

and one small open-label trial, memantine, a weak uncom-

petitive NMDAR antagonist, proved to be efficacious as add-on

treatment to resistant OCD [14e17]. Extracellular glycine is an

obligatory coagonist with glutamate on the activation of

NMDAR [18]. Greenberg and colleagues [19] conducted the first

randomized trial using glycine as adjunctive treatment for

refractory OCD. There seemed to be a trend favoring glycine

treatment.

Following a new paradigm using D-cycloserine (DCS),

a partial agonist acting on NMDA glycine site, as “cognitive

enhancer” [20] to facilitate exposure therapy for anxiety

disorders [21,22], two trials on OCD found advantage of

adjunctive DCS over placebo [23,24], but another one did not

[25]. But the administration of DCS is intermittent, immedi-

ately before each exposure session.
3. Genetic, neuroimaging, and animal
studies on OCD

Genetic association studies of OCD have identified two

susceptibility genes, which are vital for glutamatergic neuro-

transmission: a glutamate transporter gene, SLC1A1 [26e29]

and the N-methyl-D-aspartate receptor [NMDAR) subunit 2B

gene, GRIN2B [30]. Functional neuroimaging studies for OCD

demonstrated metabolic disturbance in the frontal-

subcortical circuit (FSC) [31], where glutamatergic neuro-

transmission play the role as the principal input [32]. Two

recent transgenic animal models demonstrated phenotypical

compulsive behavior: SAPAP3 knockout mouse which

demonstrated striatum-specific alternation of NMDAR

subunit composition [33] and G72/G30, a presumed D-amino

acid oxidase (DAAO) activator [34], transgenemouse[35]; while

DAAO is the main degrading enzyme of D-serine, an allosteric

coactivator of NMDARs. Both of them were associated with

NMDA functional alternation.

It is suggested that OCD is a prefrontal cortex hyper-

glutamatergic condition [36]. Glutamate levels estimated by

magnetic resonant spectroscopy are significantly elevated

in the caudate of treatment-naive pediatric OCD patients

[37], but significantly reduced in anterior cingulated cortex

(ACC) in drug-naı̈ve pediatric OCD patients [38]. Cerebral

spinal fluid (CSF) glutamate levels are greatly elevated in OCD

patients than in normal controls [39]. NMDAR antagonists

such as (2R)-amino-5-phosphonovaleric acid, ketamine, and

phencyclidine caused pathologically increased glutamate

efflux in the hippocampus, prefrontal cortex, and possibly the
striatum [40e42], which was reversible with the use of either

NMDAR agonists such as glycine or nonspecific glutamate

inhibitors such as lamotrigine, in both animal and human

preclinical studies [43,44].

A NMDAR antagonist MK-801 exacerbated the repetitive

climbing and leaping behavior in a transgenic D1CT-7 mouse

model of comorbid Tourette syndrome (TS) and OCD [45].

Therefore, potentiation of NMDA function may correct the

OCD-like behaviors. However, memantine, amantadine, and

MK-801, but not a-amino-3-hydroxy-5-methyl-4-isoxazolepro-

pionic acid (AMPA) antagonist and riluzole, significantly

inhibited murine marble-burying behavior, a potential animal

model for OCD [46], suggesting both agonist and partial antag-

onist of NMDA receptors can improve the symptoms of OCD.
4. Focusing on modulation of NMDAR
functioning

Taken together, insufficient clinical data is available to

explain why both nonspecific glutamate inhibitors (or a weak

uncompetitive NMDAR antagonist) and NMDA agonist/partial

agonist as add-on treatmentmay benefit patients with OCD. A

nonspecific glutamate inhibitors (or a weak uncompetitive

NMDAR antagonist) and NMDA agonistsmay share a common

mechanism of reducing glutamatergic neurotransmission in

frontal regions and provide therapeutic efficacy for the

patientswith OCD [19,45].We postulate that enhancingNMDA

neurotransmission in FSC may be beneficial for OCD. Glycine

transporter-1 (GlyT-1) regulates and maintains subsaturating

concentrations of glycine at the glycine site of NMDARs

[47,48]. Blockade of glycine uptake by glial GlyT-1 could

increase the availability of synaptic glycine near NMDARs

[47,48] and potentiate NMDA excitatory postsynaptic potential

(EPSCs) [48].

N-methylglycine (sarcosine) is a potent endogenous

antagonist of GlyT-1 [47,49]. In an open-label [50], flexible-

dosing study to investigate the potential efficacy and safety

of sarcosine therapy in patients with OCD, we found that (a)

sarcosine treatment for 10 weeks significantly reduced the

Yale-Brown obsessive compulsive scores in patients with

OCD, especially thosewhowere drug naı̈ve, (b) five of the eight

final respondersmet criteria of responsewithin 2 to 4weeks of

sarcosine treatment, which is quicker than the onset of

therapeutic response with serotonin reuptake inhibitors, and

(c) the therapeutic effect occurs with doses lower than the

dose for the patients with schizophrenia at 2 g/day [51e53].

The study is limited in its open-label design, a relatively small

sample, and concurrent treatment with psychotropic medi-

cations in the add-on group. Despite these limitations, the low

dropout rate, significant improvement in Yale-Brown Obses-

sive Compulsive scale (Y-BOCS) scores, particularly the naı̈ve

group, and overall favorable tolerability suggest that sarcosine

may be of clinical benefit to the patients with OCD. The effi-

cacy of sarcosine adds to the literature implicating the NMDA

neurotransmission in the pathophysiology of OCD, while

GlyT-1 may be a novel therapeutic target for OCD treatment.

As yet, we do not know how GlyT-1 inhibitors or glycine

exert their therapeutic effects in OCD. What we have known

from clinical samples and animal studies were: The
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polymorphism of NR2B subunit gene GRIN2B has been

involved with OCD [30], and the SAPAP3 gene-deleted mouse

has the striatum NR2A/NR2B ratio decreased, the field EPSCs

significantly reduced, and exhibited OCD-related phenotype

[33].

In preclinical studies, distinct NMDA modulating agents

may have pharmacologically, regionally and temporally

differential effects in the FSC relevant to OCD, given that:

(1) The developmental and physiological properties of

NMDARs: NMDARs are composed of different subunits

(NR1, NR2AeD, and, in some cases, NR3A or NR3B) and

differentially expressed both regionally in the brain

[54e56] and temporally during development [57]. Alterna-

tive composition of the NMDAR channel results in func-

tional diversity of the channel [55,56,58].

(2) Differences in neuronal NMDAR properties are largely

attributed to the NR2 subunits. NMDARs containing the

NR2A subunit have the highest affinity for competitive

antagonists [59], while NMDARs containing the NR2B

subunit have greater affinity for agonists such as glycine

and D-serine [54,56,59,60]. It is the presence of the NR2A

subunit that allows increased glycine concentrations to

potentiate the NMDAR response [61].

(3) From an anatomical perspective, synaptic processing of

excitatory input is different in the ventromedial and dorso-

lateral striatum; either glycine or D-serine increased the

peak current of NMDAR mediated excitatory postsynaptic

currents selectively in dorsolateral striatum [59]. Interest-

ingly, electrophysiological experiments demonstrated that

glycine or another GlyT-1 inhibitor CP-802,079 exerted an

inverted-"U" dose-response profile for the synaptically

evoked NMDA currents in prefrontal cortex slices [48],

while ketamine has a dose-associated biphasic influence

on the outflow of glutamate in the prefrontal cortex [40].

Given the molecular, anatomical and physiology

complexities of NMDA function, the “direct” and “indirect”

pathways unbalanced hypothesis [38,62]may partially explain

the clinical and preclinical reports that both NMDA agonists

and some uncompetitive NMDA antagonists are efficacious

for OCD.
5. The relationship between serotonergic
and NMDA signaling

The cortico-raphe glutamatergic and raphe-cortical seroto-

nergic projections may form an excitatory-inhibitory loop by

which excitatory input signals are converted into inhibitory

output projecting back to cerebral cortex [64,65]. It is possible

that the therapeutic effect of SRIs or sarcosine for OCD may

converge on diminishing ventromedial basal ganglia activity

relative to that in the dorsolateral system, or reducing gluta-

matergic hyperactivities in the frontal cortex. Either SRIs or

NMDA agents alone may reach a therapeutic ceiling and

combination treatment can bring less improvement in the

drug-exposed group than the drug-naı̈ve group. This can be

understood provided that chronic administration of SRIs leads

to altered levels of mRNA encoding NMDAR subunits and
region-specific change of NMDAR function in CNS [65,66].

Besides, the effects of SRIs were different on lateral PFC

versus ventral frontal paralimbic serotonin regulation [67],

while serotonin may exert dual actions by stimulating

5-hydroxytryptophan (5-HT) 2A receptors on g-aminobutyric

acid (GABA)ergic interneurons and 5-HT1A receptors on gluta-

matergic neurons in the prefrontal cortex [63,64], thus indi-

rectly inhibiting the primary glutamatergic output to the

ventral striatum.
6. Conclusion and future perspectives

In recent years, converging lines of evidence implicate gluta-

matergic neurotransmission in the pathophysiology and

treatment of OCD. Glutamatergic signaling through NMDAR

had showed controversial effects in clinical and preclinical

studies. This may attribute to that the distinct NMDA modu-

lating agents may have pharmacologically, regionally, and

temporally differential effects in the frontal-striatal circuitry

relevant to OCD. The use of animal models for screening

NMDAR modulating agents, and combining genetic and neu-

roimaging studies in clinical patients may expand our

understanding of the neurobiology as well as novel treat-

ments for OCD.
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